Selecting the number of components in principal component analysis using cross-validation approximations
Year of publication: |
2012
|
---|---|
Authors: | Josse, Julie ; Husson, François |
Published in: |
Computational Statistics & Data Analysis. - Elsevier, ISSN 0167-9473. - Vol. 56.2012, 6, p. 1869-1879
|
Publisher: |
Elsevier |
Subject: | PCA | Number of components | Cross-validation | Smoothing matrix | Generalized cross-validation |
-
Additive Interactive Regression Models: Circumvention of the Curse of Dimensionality
Andrews, Donald W.K., (1989)
-
On internally corrected and symmetrized kernel estimators for nonparametric regression
Linton, Oliver, (2010)
-
On regression model selection for the data with correlated errors
Wei, Wen, (2009)
- More ...
-
Nonparametric imputation by data depth
Mozharovskyi, Pavlo, (2017)
-
FactoMineR: An R Package for Multivariate Analysis
Lê, Sébastien, (2008)
-
Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis
Josse, Julie, (2012)
- More ...