Sequential scaled sparse factor regression
Year of publication: |
2022
|
---|---|
Authors: | Zheng, Zemin ; Li, Yang ; Wu, Jie ; Wang, Yuchen |
Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Abingdon : Taylor & Francis, ISSN 1537-2707, ZDB-ID 2043744-4. - Vol. 40.2022, 2, p. 595-604
|
Subject: | Big data | Scalability | Latent factors | Sparse reduced-rank regression | Stock short interest analysis | Tuning insensitiveness | Regressionsanalyse | Regression analysis | Big Data | Faktorenanalyse | Factor analysis | Schätztheorie | Estimation theory | Schätzung | Estimation |
Description of contents: | Description [tandfonline.com] |
-
Mining big data using parsimonious factor and shrinkage methods
Kim, Hyun Hak, (2013)
-
Using web-data to estimate spatial regression models
Arbia, Giuseppe, (2024)
-
High-frequency factor models and regressions
Aït-Sahalia, Yacine, (2020)
- More ...
-
L0-regularized learning for high-dimensional additive hazards regression
Zheng, Zemin, (2022)
-
A new space-time correlation coefficient and its comparison with Moran's Index on evaluation
Song, Malin, (2011)
-
Nonsparse learning with latent variables
Zheng, Zemin, (2021)
- More ...