"Shrinkage and Modification Techniques in Estimation of Variance and the Related Problems: A Review"
One of the surprising decision-theoretic result Charles Stein discovered is the inadmissibility of the uniformly minimum variance unbiased estimator (UMVUE) of the variance of a normal distribution with an unknown mean. Some methods for deriving estimators better than the UMVUE were given by Stein, Brown, Brewster and Zidek. Recently Kubokawa established a novel approach, called the IERD method, by use of which one gets a unified class of improved estimators including their previous procedures. This paper gives a review for a series of these decision-theoretical developments as well as surveys the study of the variance-estimation problem from various aspects. Related to this issue, the paper enumerates several topics with the situations where the usual plain estimators are required to be shrunken or modified, and gives reasonable procedures improving the usual ones through the IERD method.
Year of publication: |
1998-06
|
---|---|
Authors: | Kubokawa, Tatsuya |
Institutions: | Center for International Research on the Japanese Economy (CIRJE), Faculty of Economics |
Saved in:
freely available
Saved in favorites
Similar items by person
-
"Tests for Covariance Matrices in High Dimension with Less Sample Size"
Srivastava, Muni S., (2014)
-
"On Improved Shrinkage Estimators for Concave Loss"
Kubokawa, Tatsuya, (2014)
-
"Minimaxity in Predictive Density Estimation with Parametric Constraints"
Kubokawa, Tatsuya, (2012)
- More ...