Sparsity in optimal randomized classification trees
Year of publication: |
2020
|
---|---|
Authors: | Blanquero, Rafael ; Carrizosa, Emilio ; Molero-Río, Cristina ; Romero Morales, María Dolores |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 284.2020, 1 (1.7.), p. 255-272
|
Subject: | Data mining | Global and local sparsity | Nonlinear programming | Optimal classification trees | Theorie | Theory | Data Mining | Mathematische Optimierung | Mathematical programming | Nichtlineare Optimierung | Klassifikation | Classification |
-
Several multi-criteria programming methods for classification
Zhang, Juliang, (2009)
-
On the design of R-based scalable frameworks for data science applications
Theußl, Stefan Peter, (2020)
-
Using SVM to combine global heuristics for the Standard Quadratic Problem
Dellepiane, Umberto, (2015)
- More ...
-
On sparse optimal regression trees
Blanquero, Rafael, (2022)
-
Optimal randomized classification trees
Blanquero, Rafael, (2021)
-
On optimal regression trees to detect critical intervals for multivariate functional data
Blanquero, Rafael, (2023)
- More ...