Stock market anomalies and machine learning across the globe
Year of publication: |
2023
|
---|---|
Authors: | Gonçalves de Azevedo, Vitor ; Kaiser, Georg Sebastian ; Müller, Sebastian |
Published in: |
The journal of asset management : a major new, international quarterly journal for the financial community. - London [u.a.] : Henry Stewart Publ., ISSN 1479-179X, ZDB-ID 2039445-7. - Vol. 24.2023, 5, p. 419-441
|
Subject: | International stock market | Anomalies | Machines learning models | Market efficiency | Publication impact | Künstliche Intelligenz | Artificial intelligence | Effizienzmarkthypothese | Efficient market hypothesis | Aktienmarkt | Stock market | Börsenkurs | Share price | Welt | World | Kapitaleinkommen | Capital income |
-
Anomalies across the globe : once public, no longer existent?
Jacobs, Heiko, (2020)
-
Hanauer, Matthias, (2022)
-
Enhancing stock market anomalies with machine learning
Gonçalves de Azevedo, Vitor, (2023)
- More ...
-
Investor sentiment and the time‑varying sustainability premium
Gonçalves de Azevedo, Vitor, (2021)
-
The role of earnings forecasts in asset pricing models and estimates of the cost of capital
Gonçalves de Azevedo, Vitor, (2018)
-
Earnings forecasts : the case for combining analysts' estimates with a cross-sectional model
Gonçalves de Azevedo, Vitor, (2021)
- More ...