Stock Returns Forecasting via Machine Learning with Average Windows Forecasts
Year of publication: |
[2022]
|
---|---|
Authors: | Ho, Tsung-Wu ; LIN, Ya-chi |
Publisher: |
[S.l.] : SSRN |
Subject: | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Kapitaleinkommen | Capital income | Prognose | Forecast | Kapitalmarktrendite | Capital market returns | Theorie | Theory |
Extent: | 1 Online-Ressource (44 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments April 3, 2022 erstellt |
Other identifiers: | 10.2139/ssrn.3971306 [DOI] |
Classification: | G17 - Financial Forecasting ; C45 - Neural Networks and Related Topics ; c58 |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Yae, James, (2023)
-
Diverging roads: theory-based vs. machine learning-implied stock risk premia
Grammig, Joachim, (2020)
-
A bibliometric analysis of machine learning econometrics in asset pricing
Zapata, Hector O., (2022)
- More ...
-
The impact of 2007/08 financial crisis on the stability and enlargement of the EMU
Lin, Ya-Chi, (2016)
-
Foreign patent rights and high-tech exports : evidence from Taiwan
Liu, Wen-hsien, (2005)
-
Youth's overseas employment and entrepreneurship : the case of Taiwan
Lin, Ya-Chi, (2022)
- More ...