Testing for homogeneity in mixture models
Statistical models of unobserved heterogeneity are typically formalized as mix- tures of simple parametric models and interest naturally focuses on testing for homogeneity versus general mixture alternatives. Many tests of this type can be interpreted as C(») tests, as in Neyman (1959), and shown to be locally, asymptotically optimal. A unified approach to analysing the asymptotic behavior of such tests will be described, employing a variant of the LeCam LAN framework. These C(») tests will be contrasted with a new approach to likelihood ratio testing for mixture models. The latter tests are based on esti- mation of general (nonparametric) mixture models using the Kiefer and Wolfowitz (1956) maximum likelihood method. Recent developments in convex optimization are shown to dramatically improve upon earlier EM methods for computation of these estimators, and new results on the large sample behavior of likelihood ratios involving such estimators yield a tractable form of asymptotic inference. We compare performance of the two approaches identifying circumstances in which each is preferred.
Year of publication: |
2013
|
---|---|
Authors: | Gu, Jiaying ; Koenker, Roger ; Volgushev, Stanislav |
Publisher: |
London : Centre for Microdata Methods and Practice (cemmap) |
Saved in:
freely available
Series: | cemmap working paper ; CWP09/13 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | 10.1920/wp.cem.2013.0913 [DOI] 738179949 [GVK] hdl:10419/79555 [Handle] RePEc:ifs:cemmap:09/13 [RePEc] |
Source: |
Persistent link: https://www.econbiz.de/10010318728
Saved in favorites
Similar items by person
-
Testing for homogeneity in mixture models
Gu, Jiaying, (2017)
-
Testing for homogeneity in mixture models
Gu, Jiaying, (2013)
-
Testing for homogeneity in mixture models
Gu, Jiaying, (2018)
- More ...