The Gibbs sampler with particle efficient importance sampling for state-space models
Year of publication: |
2019
|
---|---|
Authors: | Grothe, Oliver ; Kleppe, Tore Selland ; Liesenfeld, Roman |
Published in: |
Econometric reviews. - Philadelphia, Pa. : Taylor & Francis, ISSN 1532-4168, ZDB-ID 2041746-9. - Vol. 38.2019, 10, p. 1152-1175
|
Subject: | Ancestor sampling | dynamic latent variable models | efficient importance sampling | Markov chain Monte Carlo | sequential importance sampling | Stichprobenerhebung | Sampling | Theorie | Theory | Monte-Carlo-Simulation | Monte Carlo simulation | Markov-Kette | Markov chain | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Bayes-Statistik | Bayesian inference | Zustandsraummodell | State space model |
-
Joint Bayesian analysis of parameters and states in nonlinear, non-Gaussian state space models
Barra, István, (2014)
-
Improved marginal likelihood estimation via power posteriors and importance sampling
Li, Yong, (2023)
-
Comparing hybrid time-varying parameter VARs
Chan, Joshua, (2018)
- More ...
-
The Gibbs Sampler with Particle Efficient Importance Sampling for State-Space Models
Grothe, Oliver, (2017)
-
Efficient high-dimensional importance sampling in mixture frameworks
Kleppe, Tore Selland, (2011)
-
Estimating the competitive storage model with stochastic trends in commodity prices
Osmundsen, Kjartan Kloster, (2021)
- More ...