The 'pathology' of the Natural Conjugate Prior Density in the Regression Model
In a Bayesian analysis of the linear regression model, one may have prior information on the error variance. If one incorporates this kind of information in a natural conjugate prior density, under certain conditions the posterior mean of the coefficients on which one is informative is equal to a constrained least squares estimator. The value of the posterior covariance matrix is also studied. We discuss and illustrate how to avoid getting posterior results too close to the “pathological” results summarized above.
Year of publication: |
1991
|
---|---|
Authors: | BAUWENS, Luc |
Published in: |
Annales d'Economie et de Statistique. - École Nationale de la Statistique et de l'Admnistration Économique (ENSAE). - 1991, 23, p. 49-64
|
Publisher: |
École Nationale de la Statistique et de l'Admnistration Économique (ENSAE) |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Rombouts, Jeroen V. K., (2004)
-
Adaptive Polar Sampling: A New MC Technique for the Analysis of Ill-behaved Surfaces
Bauwens, Luc, (1998)
-
Adaptive Polar Sampling with an Application to a Bayes Measure of Value-at-Risk
Bauwens, Luc, (1999)
- More ...