Two-Stage Importance Sampling With Mixture Proposals
For importance sampling (IS), multiple proposals can be combined to address different aspects of a target distribution. There are various methods for IS with multiple proposals, including Hesterberg's stratified IS estimator, Owen and Zhou's regression estimator, and Tan's maximum likelihood estimator. For the problem of efficiently allocating samples to different proposals, it is natural to use a pilot sample to select the mixture proportions before the actual sampling and estimation. However, most current discussions are in an empirical sense for such a two-stage procedure. In this article, we establish a theoretical framework of applying the two-stage procedure for various methods, including the asymptotic properties and the choice of the pilot sample size. By our simulation studies, these two-stage estimators can outperform estimators with naive choices of mixture proportions. Furthermore, while Owen and Zhou's and Tan's estimators are designed for estimating normalizing constants, we extend their usage and the two-stage procedure to estimating expectations and show that the improvement is still preserved in this extension.
Year of publication: |
2013
|
---|---|
Authors: | Li, Wentao ; Tan, Zhiqiang ; Chen, Rong |
Published in: |
Journal of the American Statistical Association. - Taylor & Francis Journals, ISSN 0162-1459. - Vol. 108.2013, 504, p. 1350-1365
|
Publisher: |
Taylor & Francis Journals |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Trade and investment facilitation in East Asia : development, challenges and cooperation
Fan, Ying, (2013)
-
Bebek, Ufuk Gunes, (2021)
-
Director Expertise and Compliance to Corporate Social Responsibility Regulations
HomRoy, Swarnodeep, (2021)
- More ...