Using a genetic algorithm to improve recurrent reinforcement learning for equity trading
Year of publication: |
April 2016
|
---|---|
Authors: | Zhang, Jin ; Maringer, Dietmar G. |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer, ISSN 0927-7099, ZDB-ID 1142021-2. - Vol. 47.2016, 4, p. 551-567
|
Subject: | Artificial intelligence | Algorithmic trading | Recurrent reinforcement learning | Genetic algorithm | Indicator selection | Sharpe ratio | Evolutionärer Algorithmus | Evolutionary algorithm | Lernprozess | Learning process | Künstliche Intelligenz | Wertpapierhandel | Securities trading | Theorie | Theory | Algorithmus | Algorithm | Elektronisches Handelssystem | Electronic trading | Portfolio-Management | Portfolio selection | Anlageverhalten | Behavioural finance |
-
Artificial intelligence in asset management
Bartram, Söhnke M., (2020)
-
Are cryptocurrencies cryptic or a source of arbitrage? : a genetic algorithm approach
Bewaji, Oluwasegun, (2023)
-
Kryńska, Katarzyna, (2022)
- More ...
-
Zhang, Jin, (2010)
-
Selecting pair-copulas with downside risk minimisation
Zhang, Jin, (2011)
-
Channels of sovereign risk spillovers and investment in the manufacturing sector
Deininger, Sebastian M., (2017)
- More ...