Using artificial intelligence to identify strategic mortgage default attitudes
Year of publication: |
2022
|
---|---|
Authors: | Anderson, Jackson T. ; Freybote, Julia ; Lucus, David ; Seiler, Michael J. ; Simon, Lauren |
Published in: |
Journal of real estate research : JRER ; a publication of the American Real Estate Society. - London [u.a.] : Taylor & Francis, ISSN 2691-1175, ZDB-ID 2037318-1. - Vol. 44.2022, 3, p. 429-445
|
Subject: | artificial intelligence | borrower characteristics | emotion recognition | Residential mortgages | strategic default | Künstliche Intelligenz | Artificial intelligence | Hypothek | Mortgage | Kreditrisiko | Credit risk | Insolvenz | Insolvency | Kreditwürdigkeit | Credit rating | Emotion |
-
Default analysis in mortgage risk with conventional and deep machine learning focusing on 2008-2009
Ojha, Vikram, (2021)
-
Predicting mortgage early delinquency with machine learning methods
Chen, Shunqin, (2021)
-
Impact of Mortgage Soft Information in Loan Pricing on Default Prediction using Machine Learning
Luong, Mai, (2022)
- More ...
-
How much are borrowers willing to pay to remove uncertainty surrounding mortgage defaults?
Anderson, Jackson T., (2022)
-
Using asymmetric dominance to resolve toxic debt : combining online and field experiments
Anderson, Jackson T., (2021)
-
Anderson, Jackson T., (2023)
- More ...