Using Bayesian posterior model probabilities to identify omitted variables in spatial regression models
Year of publication: |
June 2015
|
---|---|
Authors: | Lacombe, Donald J. ; Lesage, James P. |
Published in: |
Papers in regional science : the journal of the Regional Science Association International. - Oxford [u.a.] : Wiley-Blackwell, ISSN 1056-8190, ZDB-ID 1078701-X. - Vol. 94.2015, 2, p. 365-383
|
Subject: | Common factor relationship | global spatial spillovers | Bayesian model comparison methods | Bayes-Statistik | Bayesian inference | Theorie | Theory | Spillover-Effekt | Spillover effect | Regionalökonomik | Regional economics | Modellierung | Scientific modelling | Räumliche Interaktion | Spatial interaction | Regressionsanalyse | Regression analysis |
-
Geographically weighted regression analysis for spatial economics data : a Bayesian recourse
Ma, Zhihua, (2021)
-
What regional scientists need to know about spatial econometrics
Lesage, James P., (2014)
-
Spatial weights matrix selection and model averaging for spatial autoregressive models
Zhang, Xinyu, (2018)
- More ...
-
Use and interpretation of spatial autoregressive probit models
Lacombe, Donald J., (2018)
-
Use and Interpretation of Spatial Autoregressive Probit Models
Lacombe, Donald J., (2013)
-
Lacombe, Donald J., (2012)
- More ...