Variable Rare Disasters : An Exactly Solved Framework for Ten Puzzles in Macro-Finance
This paper incorporates a time-varying intensity of disasters in the Rietz-Barro hypothesis that risk premia result from the possibility of rare, large disasters. During a disaster, an asset's fundamental value falls by a time-varying amount. This in turn generates time-varying risk premia and thus volatile asset prices and return predictability. Using the recent technique of linearity-generating processes (Gabaix 2007), the model is tractable, and all prices are exactly solved in closed form. In the quot;variable rare disastersquot; framework, the following empirical regularities can be understood qualitatively: (i) equity premium puzzle (ii) risk-free rate-puzzle (iii) excess volatility puzzle (iv) predictability of aggregate stock market returns with price-dividend ratios (v) value premium (vi) often greater explanatory power of characteristics than covariances for asset returns (vii) upward sloping nominal yield curve (viiii) a steep yield curve predicts high bond excess returns and a fall in long term rates (ix) corporate bond spread puzzle (x) high price of deep out-of-the-money puts. I also provide a calibration in which those puzzles can be understood quantitatively as well. The fear of disaster can be interpreted literally, or can be viewed as a tractable way to model time-varying risk-aversion or investor sentiment