Voting Equilibria in Multi-candidate Elections
We consider a general plurality voting game with multiple candidates, where voter preferences over candidates are exogenously given. In particular, we allow for arbitrary voter indierences, as may arise in voting subgames of citizen-candidate or locational models of elections. We prove that the voting game admits pure strategy equilibria in undominated strategies. The proof is constructive: we exhibit an algorithm, the “best winning deviation” algorithm, that produces such an equilibrium in finite time. A byproduct of the algorithm is a simple story for how voters might learn to coordinate on such an equilibrium.
Year of publication: |
2008-02
|
---|---|
Authors: | Duggan, John ; Sekiya, Yoji |
Institutions: | University of Rochester - Wallis Institute of Political Economy |
Saved in:
freely available
Saved in favorites
Similar items by person
-
A Folk Theorem for Repeated Elections with Adverse Selection
Duggan, John, (2013)
-
Bargaining Foundations of the Median Voter Theorem
Duggan, John, (2007)
-
Social Choice in the General Spatial Model of Politics
Banks, Jeffrey,
- More ...