Why are Bayesian trend-cycle decompositions of US real GDP so different?
Year of publication: |
2020
|
---|---|
Authors: | Kim, Jaeho ; Chon, Sora |
Published in: |
Empirical economics : a journal of the Institute for Advanced Studies, Vienna, Austria. - Berlin : Springer, ISSN 0377-7332, ZDB-ID 519394-1. - Vol. 58.2020, 3, p. 1339-1354
|
Subject: | Trend-cycle decomposition | Unobserved components model | Structural break | Gibbs sampling | Zeitreihenanalyse | Time series analysis | Strukturbruch | Dekompositionsverfahren | Decomposition method | Nationaleinkommen | National income | Theorie | Theory | Bayes-Statistik | Bayesian inference | Konjunktur | Business cycle | USA | United States | Bruttoinlandsprodukt | Gross domestic product | Zustandsraummodell | State space model |
-
When are trend-cycle decompositions of GDP reliable?
González-Astudillo, Manuel, (2022)
-
Is it one break or ongoing permanent shocks that explains US real GDP?
Luo, Sui, (2014)
-
Reconciling output gaps : unobserved components model and Hodrick-Prescott filter
Chan, Joshua, (2016)
- More ...
-
Permanent and Transitory Shocks to the U.S. Economy : Has Their Importance Been Constant over Time?
Kim, Jaeho, (2017)
-
Bayesian estimation of the long-run trend of the US economy
Kim, Jaeho, (2022)
-
Why Are Bayesian Trend-Cycle Decompositions of U.S. Real GDP So Different?
Kim, Jaeho, (2018)
- More ...