Window length selection and signal-noise separation and reconstruction in singular spectrum analysis
Md Atikur Rahman Khan and D. S. Poskitt
In Singular Spectrum Analysis (SSA) window length is a critical tuning parameter that must be assigned by the practitioner. This paper provides a theoretical analysis of signal-noise separation and reconstruction in SSA that can serve as a guide to optimal window choice. We establish numerical bounds on the mean squared reconstruction error and present their almost sure limits under very general regularity conditions on the underlying data generating mechanism. We also provide asymptotic bounds for the mean squared separation error. Evidence obtained using simulation experiments indicates that the theoretical properties are reflected in observed behaviour, even in relatively small samples, and the results indicate how an optimal choice for the window length can be made. Dimension, Embedding, Mean squared error, Reconstruction, Signalnoise separation, Window length.