Showing 1 - 9 of 9
Stochastic Volatility (SV) models are widely used in financial applications. To decide whether standard parametric restrictions are justified for a given dataset, a statistical test is required. In this paper, we develop such a test based on the linear state space representation. We provide a...
Persistent link: https://www.econbiz.de/10009578026
For over a decade, nonparametric modelling has been successfully applied to study nonlinear structures in financial time series. It is well known that the usual nonparametric models often have less than satisfactory performance when dealing with more than one lag. When the mean has an additive...
Persistent link: https://www.econbiz.de/10009578559
We consider two multivariate long-memory ARCH models, which extend the univariate long-memory ARCH models, we first consider a long-memory extension of the restricted constant conditional correlations (CCC) model introduced by Bollerslev (1990), and we propose a new unrestricted conditional...
Persistent link: https://www.econbiz.de/10009579181
Persistent link: https://www.econbiz.de/10010351684
Price variations observed at speculative markets exhibit positive autocorrelation and cross correlation among a set of assets, stock market indices, exchange rates etc. A particular problem in investigating multivariate volatility processes arises from the high dimensionality implied by a...
Persistent link: https://www.econbiz.de/10009612567
approach, however, is likely to result in a loss of information, since the surface structure of implied volatilities in the …
Persistent link: https://www.econbiz.de/10009613597
The analysis of diffusion processes in financial models is crucially dependent on the form of the drift and diffusion coefficient functions. A methodology is proposed for estimating and testing coefficient functions for ergodic diffusions that are not directly observable. It is based on...
Persistent link: https://www.econbiz.de/10009613611
Persistent link: https://www.econbiz.de/10001918978
Persistent link: https://www.econbiz.de/10011432076