Showing 1 - 10 of 347
In the face of rising defaults and limited studies on the prediction of financial distress in Morocco, this article aims to determine the most relevant predictors of financial distress and identify its optimal prediction models in a normal Moroccan economic context over two years. To achieve...
Persistent link: https://www.econbiz.de/10012704037
In this paper, we propose a credible regression approach with random coefficients to model and forecast the mortality dynamics of a given population with limited data. Age-specific mortality rates are modelled and extrapolation methods are utilized to estimate future mortality rates. The results...
Persistent link: https://www.econbiz.de/10012015901
We introduce a multistep-ahead forecasting methodology that combines empirical mode decomposition (EMD) and support vector regression (SVR). This methodology is based on the idea that the forecasting task is simplified by using as input for SVR the time series decomposed with EMD. The outcomes...
Persistent link: https://www.econbiz.de/10011811500
In this paper, we study the problem of misrepresentation under heavy-tailed regression models with the presence of both misrepresented and correctly-measured risk factors. Misrepresentation is a type of fraud when a policy applicant gives a false statement on a risk factor that determines the...
Persistent link: https://www.econbiz.de/10011890807
We employ a mixed-frequency quantile regression approach to model the time-varying conditional distribution of the US real GDP growth rate. We show that monthly information on the US financial cycle improves the predictive power of an otherwise quarterly-only model. We combine selected quantiles...
Persistent link: https://www.econbiz.de/10013440379
In this study, we proposed two types of hybrid models based on the heterogeneous autoregressive (HAR) model and support vector regression (SVR) model to forecast realized volatility (RV). The first model is a residual-type model, where the RV is first predicted using the HAR model, and the...
Persistent link: https://www.econbiz.de/10014480965
We leverage telematics data on driving behavior variables to assess driver risk and predict future insurance claims in a case study utilising a representative telematics sample. In the study, we aim to categorise drivers according to their driving habits and establish premiums that accurately...
Persistent link: https://www.econbiz.de/10015065977
We propose a hybrid classical-quantum approach for modeling transition probabilities in health and disability insurance. The modeling of logistic disability inception probabilities is formulated as a support vector regression problem. Using a quantum feature map, the data are mapped to quantum...
Persistent link: https://www.econbiz.de/10012745406
This paper aims to identify the determinants and predictors of Small and Medium-sized Enterprises (SMEs)' financial failure. Within this framework, we have opted for a quantitative method based on a sample of healthy and failing SMEs of a Moroccan bank. The main results of the different optimal...
Persistent link: https://www.econbiz.de/10012384411
We define the nagging predictor, which, instead of using bootstrapping to produce a series of i.i.d. predictors, exploits the randomness of neural network calibrations to provide a more stable and accurate predictor than is available from a single neural network run. Convergence results for the...
Persistent link: https://www.econbiz.de/10012293262