Showing 1 - 10 of 10
This paper presents the first large-scale application of deep reinforcement learning to optimize the placement of limit orders at cryptocurrency exchanges. For training and out-of-sample evaluation, we use a virtual limit order exchange to reward agents according to the realized shortfall over a...
Persistent link: https://www.econbiz.de/10012204902
data across lines of business, and show that they improve on the predictive accuracy of existing stochastic methods. The …
Persistent link: https://www.econbiz.de/10012126426
The advent of reinforcement learning (RL) in financial markets is driven by several advantages inherent to this field of artificial intelligence. In particular, RL allows to combine the "prediction" and the "portfolio construction" task in one integrated step, thereby closely aligning the...
Persistent link: https://www.econbiz.de/10011904954
In the field of mortality, the Lee–Carter based approach can be considered the milestone to forecast mortality rates among stochastic models. We could define a “Lee–Carter model family” that embraces all developments of this model, including its first formulation (1992) that remains the...
Persistent link: https://www.econbiz.de/10012015810
The global foreign exchange (FX) market represents a critical and sizeable component of our financial system. It is a market where firms and investors engage in both speculative trading and hedging. Over the years, there has been a growing interest in FX modeling and prediction. Recently,...
Persistent link: https://www.econbiz.de/10015066311
This paper proposes a generalized deep learning approach for predicting claims developments for non-life insurance reserving. The generalized approach offers more flexibility and accuracy in solving actuarial reserving problems. It predicts claims outstanding weighted by exposure instead of loss...
Persistent link: https://www.econbiz.de/10014480914
Given the computational challenges associated with valuing large variable annuity (VA) portfolios, a variety of data mining frameworks, including metamodeling and active learning, have been proposed in recent years. Active learning, a promising alternative to metamodeling, enhances the...
Persistent link: https://www.econbiz.de/10014636846
In recent years, machine learning research has gained momentum: New developments in the field of deep learning allow for multiple levels of abstraction and are starting to supersede well-known and powerful tree-based techniques mainly operating on the original feature space. All these methods...
Persistent link: https://www.econbiz.de/10011447127
Over the past 15 years,there have been a number of studies using text mining for predicting stock market data. Two recent publications employed support vector machines and second-order Factorization Machines, respectively, to this end. However, these approaches either completely neglect...
Persistent link: https://www.econbiz.de/10011656152
Long short-term memory (LSTM) networks are a state-of-the-art technique for sequence learning. They are less commonly applied to financial time series predictions, yet inherently suitable for this domain. We deploy LSTM networks for predicting out-of-sample directional movements for the...
Persistent link: https://www.econbiz.de/10011644167