Showing 1 - 10 of 13,475
The sum of squared intraday returns provides an unbiased and almost error-free measure of ex-post volatility. In this paper we develop a nonlinear Autoregressive Fractionally Integrated Moving Average (ARFIMA) model for realized volatility, which accommodates level shifts, day-of-the-week...
Persistent link: https://www.econbiz.de/10010325218
In this study we combine clustering techniques with a moving window algorithm in order to filter financial market data outliers. We apply the algorithm to a set of financial market data which consists of 25 series selected from a larger dataset using a cluster analysis technique taking into...
Persistent link: https://www.econbiz.de/10011604994
We propose a new semiparametric observation-driven volatility model where the form of the error density directly influences the volatility dynamics. This feature distinguishes our model from standard semiparametric GARCH models. The link between the estimated error density and the volatility...
Persistent link: https://www.econbiz.de/10010326169
As an asset is traded, its varying prices trace out an interesting time series. The price, at least in a general way, reflects some underlying value of the asset. For most basic assets, realistic models of value must involve many variables relating not only to the individual asset, but also to...
Persistent link: https://www.econbiz.de/10010270708
Multi-fractal processes have been proposed as a new formalism for modeling the time series of returns in finance. The major attraction of these processes is their ability to generate various degrees of long memory in different powers of returns - a feature that has been found to characterize...
Persistent link: https://www.econbiz.de/10010295056
It has become popular recently to apply the multifractal formalism of statistical physics (scaling analysis of structure functions and f(a) singularity spectrum analysis) to financial data. The outcome of such studies is a nonlinear shape of the structure function and a nontrivial behavior of...
Persistent link: https://www.econbiz.de/10010295150
In this paper we want to discuss macroscopic and microscopic properties of financial markets. By analyzing quantitatively a database consisting of 13 minute per minute recorded financial time series, we identify some macroscopic statistical properties of the corresponding markets, with a special...
Persistent link: https://www.econbiz.de/10010301759
In this paper, we study the dynamic interdependencies between high-frequency volatility, liquidity demand as well as trading costs in an electronic limit order book market. Using data from the Australian Stock Exchange we model 1-min squared mid-quote returns, average trade sizes, number of...
Persistent link: https://www.econbiz.de/10010263738
The basic model for high-frequency data in finance is considered, where an efficient price process is observed under microstructure noise. It is shown that this nonparametric model is in Le Cam's sense asymptotically equivalent to a Gaussian shift experiment in terms of the square root of the...
Persistent link: https://www.econbiz.de/10010281553
We introduce a long memory autoregressive conditional Poisson (LMACP) model to model highly persistent time series of counts. The model is applied to forecast quoted bid-ask spreads, a key parameter in stock trading operations. It is shown that the LMACP nicely captures salient features of...
Persistent link: https://www.econbiz.de/10010281578