Showing 1 - 10 of 6,581
This paper shows that CEO tweets contain informational content on the U.S. stock markets and provide investors with value-relevant information on predicting the stock price movement. We create a large, unique sample of CEO users on Twitter, extract hashtags and sentiments that can be used as...
Persistent link: https://www.econbiz.de/10014239425
This paper develops textual sentiment measures for China's stock market by extracting the textual tone of 60 million messages posted on a major online investor forum in China from 2008 to 2018. We conduct sentiment extraction by using both conventional dictionary methods based on customized word...
Persistent link: https://www.econbiz.de/10012125620
For stock market predictions, the essence of the problem is usually predicting the magnitude and direction of the stock price movement as accurately as possible. There are different approaches (e.g., econometrics and machine learning) for predicting stock returns. However, it is non-trivial to...
Persistent link: https://www.econbiz.de/10013305881
Echo State Neural Networks (ESN) were applied to forecast the realized variance time series of 19 major stock market indices. Symmetric ESN and asymmetric AESN models were constructed and compared with the benchmark realized variance models HAR and AHAR that approximate the long memory of the...
Persistent link: https://www.econbiz.de/10011818288
This article studies the risk forecasting properties of three realized volatility models for three Chinese individual stocks, and reveals the important role that jumps can play in risk prediction. I firstly investigate dynamic pattern of jumps in three Chinese stocks, and find that relative to...
Persistent link: https://www.econbiz.de/10013131542
The empirical literature of stock market predictability mainly suffers from model uncertainty and parameter instability. To meet this challenge, we propose a novel approach that combines the documented merits of diffusion indices, regime-switching models, and forecast combination to predict the...
Persistent link: https://www.econbiz.de/10013250734
Persistent link: https://www.econbiz.de/10011547124
Persistent link: https://www.econbiz.de/10002948930
Persistent link: https://www.econbiz.de/10001552786
Persistent link: https://www.econbiz.de/10001490330