Showing 1 - 10 of 1,196
We analyze the joint out-of-sample predictive ability of a comprehensive set of 299 firm characteristics for cross-sectional stock returns. We develop a cross-sectional out-of-sample R2 statistic that provides an informative measure of the accuracy of cross-sectional return forecasts in terms of...
Persistent link: https://www.econbiz.de/10012852228
This paper studies the predictability of ultra high-frequency stock returns and durations to relevant price, volume and transactions events, using machine learning methods. We find that, contrary to low frequency and long horizon returns, where predictability is rare and inconsistent,...
Persistent link: https://www.econbiz.de/10013290620
In asset pricing, most studies focus on finding new factors such as macroeconomic factors or firm characteristics to explain risk premium. Investigating whether these factors are useful in forecasting stock returns remains active research in the field of finance and computer science. This paper...
Persistent link: https://www.econbiz.de/10014235825
For stock market predictions, the essence of the problem is usually predicting the magnitude and direction of the stock price movement as accurately as possible. There are different approaches (e.g., econometrics and machine learning) for predicting stock returns. However, it is non-trivial to...
Persistent link: https://www.econbiz.de/10013305881
This paper studies the predictability of ultra high-frequency stock returns and durations to relevant price, volume and transactions events, using machine learning methods. We find that, contrary to low frequency and long horizon returns, where predictability is rare and inconsistent,...
Persistent link: https://www.econbiz.de/10013362020
In this paper, we assess the Value at Risk (VaR) prediction accuracy and efficiency of six ARCH-type models, six realized volatility models and two GARCH models augmented with realized volatility regressors. The α-th quantile of the innovation's distribution is estimated with the fully...
Persistent link: https://www.econbiz.de/10013126884
Several academics have studied the ability of hybrid models mixing univariate Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models and neural networks to deliver better volatility predictions than purely econometric models. Despite presenting very promising results, the...
Persistent link: https://www.econbiz.de/10013211314
Stock returns predictability has been a long-standing topic in the literature on financial economics. Developments in prediction technology have facilitated the wide use of machine learning techniques, which motivates our study of whether stock returns predictability can be improved using...
Persistent link: https://www.econbiz.de/10013313206
Portfolio managers and individual investors alike are in quest of efficient asset allocation models that simultaneously express environmental, social, and governance (ESG) considerations along with investor behavioral biases. The current study presents a novel approach to optimize the behavioral...
Persistent link: https://www.econbiz.de/10013322710
The paper evaluates the out-of-sample predictive potential of machine learning methods in the cross-section of international equity index returns using firm fundamentals and macroeconomic predictors. The relatively small number of equity indices in the cross-section compared to the multitude of...
Persistent link: https://www.econbiz.de/10012846997