Showing 1 - 10 of 2,638
This paper revisits the fractional co-integrating relationship between ex-ante implied volatility and ex-post realized volatility. Previous studies on stock index options have found biases and inefficiencies in implied volatility as a forecast of future volatility. It is argued that the concept...
Persistent link: https://www.econbiz.de/10011280711
This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most...
Persistent link: https://www.econbiz.de/10011524214
This paper revisits the fractional cointegrating relationship between ex-ante implied volatility and ex-post realized volatility. We argue that the concept of corridor implied volatility (CIV) should be used instead of the popular model-free option-implied volatility (MFIV) when assessing the...
Persistent link: https://www.econbiz.de/10013090381
This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most...
Persistent link: https://www.econbiz.de/10011823308
Considering the inferior volatility tracking capability of the point-data-based models, we propose using the more informative price interval data and building interval regression models for volatility forecasting. To characterize the heterogeneity of the market and the nonlinearity of...
Persistent link: https://www.econbiz.de/10014284403
We consider a nonparametric time series regression model. Our framework allows precise estimation of betas without the usual assumption of betas being piecewise constant. This property makes our framework particularly suitable to study individual stocks. We provide an inference framework for all...
Persistent link: https://www.econbiz.de/10012894411
Using well-known GARCH models for density prediction of daily S&P 500 and Nikkei 225 index returns, a comparison is provided between frequentist and Bayesian estimation. No significant difference is found between the qualities of the forecasts of the whole density, whereas the Bayesian approach...
Persistent link: https://www.econbiz.de/10012976219
In this paper, we provide evidence that fat tails and stochastic volatility can be important in improving in-sample fit and out-of-sample forecasting performance. Specifically, we construct a VAR model where the orthogonalised shocks feature Student's t distribution and time-varying variance. We...
Persistent link: https://www.econbiz.de/10013021982
A family of threshold nonlinear generalised autoregressive conditionally heteroscedastic models is considered, that allows smooth transitions between regimes, capturing size asymmetry via an exponential smooth transition function. A Bayesian approach is taken and an efficient adaptive sampling...
Persistent link: https://www.econbiz.de/10014204112
An effective approach for forecasting return volatility via threshold nonlinear heteroskedastic models of the daily asset price range is provided. The return is defined as the difference between the highest and lowest log intra-day asset price. A general model specification is proposed, allowing...
Persistent link: https://www.econbiz.de/10014207634