CRES, Herve - HEC Paris (École des Hautes Études Commerciales) - 2000
In a simple parametric general equilibrium model with S states of nature and K < S firms - and thus potentially incomplete markets-, rates of super majority rule p€[1/2, 1] are computed which guarantee the existence of p -majority stable production equilibria : within each firm, no alternative production plan can rally a proportion bigger than p of the shareholders, or shares (depending on the governance), against the equilibrium. The smallest p are obtained for announced production plans whose span contains the ideal consumptions of all K mean shareholders. This is done under various governances. These rates of super majority are shown to be always smaller than Caplin and Nalebuff (1988, 1991) bound of 1-1/e ~ 0.64. Moreover, simple majority production equilibria are shown to exist for any initial distribution of types when K=S-1, and for symmetric distributions of types as soon as K > S/2. Finally, through parametric examples, these rates are shown to decrease with the homogeneity of the shareholders' beliefs on the probabilities of the states of nature, and to increase with the shareholders'...</s>