Heterogeneous demand effects of recommendation strategies in a mobile application : evidence from econometric models and machine-learning instruments
Year of publication: |
2022
|
---|---|
Authors: | Adamopoulos, Panagiotis ; Ghose, Anindya ; Tuzhilin, Alexander |
Published in: |
MIS quarterly. - Minneapolis, Minn : MISRC, ISSN 2162-9730, ZDB-ID 2068190-2. - Vol. 46.2022, 1, p. 101-150
|
Subject: | Recommendations | demand | mobile | econometrics | instrumental variables | deep learning | machine learning | Künstliche Intelligenz | Artificial intelligence | Ökonometrie | Econometrics | IV-Schätzung | Instrumental variables | Konsumentenverhalten | Consumer behaviour | Mobilkommunikation | Mobile communications | Mobile Anwendung | Mobile application | Nachfrage | Demand | Ökonometrisches Modell | Econometric model |
-
Excessive dependence on mobile social apps : a rational addiction perspective
Kwon, Hyeokkoo Eric, (2016)
-
Estimating demand for mobile applications in the new economy
Ghose, Anindya, (2014)
-
Demand for in-app purchases in mobile apps : a difference-in-difference approach
Enache, Andreea, (2023)
- More ...
-
Adamopoulos, Panagiotis, (2021)
-
Probabilistic Neighborhood Selection in Collaborative Filtering Systems
Tuzhilin, Alexander, (2013)
-
On Unexpectedness in Recommender Systems : Or How to Better Expect the Unexpected
Adamopoulos, Panagiotis, (2013)
- More ...