Separating the signal from the noise - financial machine learning for Twitter
Year of publication: |
[2018]
|
---|---|
Authors: | Schnaubelt, Matthias ; Fischer, Thomas G. ; Krauss, Christopher |
Publisher: |
[Nürnberg] : Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Economics |
Subject: | Finance | statistical arbitrage | machine learning | random forests | trading strategy backtesting | social media | Künstliche Intelligenz | Artificial intelligence | Social Web | Social web | Portfolio-Management | Portfolio selection | Prognoseverfahren | Forecasting model | Kapitalmarkttheorie | Financial economics | Arbitrage | Finanzmarkt | Financial market |
Extent: | 1 Online-Ressource (circa 36 Seiten) Illustrationen |
---|---|
Series: | FAU discussion papers in economics. - Erlangen : FAU, ISSN 1867-6707, ZDB-ID 2851451-8. - Vol. no. 2018, 14 |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
Other identifiers: | hdl:10419/191256 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Knoll, Julian, (2017)
-
Deep learning with long short-term memory networks for financial market predictions
Fischer, Thomas, (2017)
-
Kelly, Bryan T., (2023)
- More ...
-
Separating the signal from the noise - financial machine learning for Twitter
Schnaubelt, Matthias, (2018)
-
Machine learning in futures markets
Waldow, Fabian, (2021)
-
Machine learning in futures markets
Waldow, Fabian, (2021)
- More ...