Supervised Machine Learning for Theory Building and Testing : Opportunities in Operations Management
Year of publication: |
2022
|
---|---|
Authors: | Chou, Yen-Chun ; Chuang, Howard Hao-Chun ; Chou, Ping ; Oliva, Rogelio |
Publisher: |
[S.l.] : SSRN |
Subject: | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence | Prozessmanagement | Business process management |
Extent: | 1 Online-Ressource (61 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | In: Journal of Operations Management Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments 2022 erstellt |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times
Heger, Jens, (2016)
-
Dispatching rule selection with Gaussian processes
Heger, Jens, (2015)
-
Einsatz intelligenter Agenten zur Entscheidungsunterstützung in prozeßorientierten Unternehmen
Schönfeldt, Bjørn F., (2001)
- More ...
-
Supervised machine learning for theory building and testing : opportunities in operations management
Chou, Yen-Chun, (2023)
-
Chou, Ping, (2022)
-
Cross-item Learning for Volatile Demand Forecasting : An Intervention with Predictive Analytics
Chuang, Howard Hao-Chun, (2021)
- More ...