Unbalanced data, type II error, and nonlinearity in predicting M&A failure
Year of publication: |
2020
|
---|---|
Authors: | Lee, Kangbok ; Joo, Sunghoon ; Baik, Hyeoncheol ; Han, Sumin ; In, Joonhwan |
Published in: |
Journal of business research : JBR. - New York, NY : Elsevier, ISSN 0148-2963, ZDB-ID 189773-1. - Vol. 109.2020, p. 271-287
|
Subject: | Generalized logit model | Logit and Probit model | Machine learning | Merger and acquisition | Neural network | Nonlinearity prediction | Unbalanced data | Logit-Modell | Logit model | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Probit-Modell | Probit model | Nichtlineare Regression | Nonlinear regression | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence | Mikroökonometrie | Microeconometrics | Übernahme | Takeover |
-
Machine learning advances for time series forecasting
Masini, Ricardo P., (2023)
-
Machine learning advances for time series forecasting
Masini, Ricardo P., (2020)
-
Approximate nonlinear forecasting methods
White, Halbert, (2006)
- More ...
-
A bank's optimal capital ratio : a time-varying parameter model to the partial adjustment framework
Baik, Hyeoncheol, (2022)
-
Forecasting net charge-off rates of banks : what model works best?
Barth, James R., (2018)
-
Powell, Adam, (2018)
- More ...