unFEAR : unsupervised feature extraction clustering with an application to crisis regimes classification
Year of publication: |
2020
|
---|---|
Authors: | Chan-Lau, Jorge A. ; Wang, Ran |
Publisher: |
[Washington, DC] : International Monetary Fund |
Subject: | clustering | unsupervised feature extraction | autoencoder | machine learning | deeplearning | biased label problem | crisis prediction | Regionales Cluster | Regional cluster | Prognoseverfahren | Forecasting model | Clusteranalyse | Cluster analysis | Künstliche Intelligenz | Artificial intelligence | Data Mining | Data mining |
Extent: | 1 Online-Ressource (circa 25 Seiten) Illustrationen |
---|---|
Series: | IMF working papers. - Washington, DC : IMF, ZDB-ID 2108494-4. - Vol. WP/20, 262 |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
ISBN: | 978-1-5135-6166-0 |
Other identifiers: | 10.5089/9781513561660.001 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Rathore, Bhawana, (2024)
-
Self-organizing maps : a novel approach to identify and map business clusters
Bowen, Francis, (2024)
-
Clustering mixed-type player behavior data for churn prediction in mobile games
Perišić, Ana, (2023)
- More ...
-
Chan-Lau, Jorge A., (2021)
-
Chan-Lau, Jorge A., (2021)
-
Loeschel, Andreas, (2018)
- More ...