Showing 1 - 10 of 10
Persistent link: https://www.econbiz.de/10012502565
Most statistical arbitrage strategies in the academic literature soley rely on price time series. By contrast, alternative data sources are of growing importance for professional investors. We contribute to bridging this gap by assessing the price-predictive value of more than nine million...
Persistent link: https://www.econbiz.de/10011949326
Long short-term memory (LSTM) networks are a state-of-the-art technique for sequence learning. They are less commonly applied to financial time series predictions, yet inherently suitable for this domain. We deploy LSTM networks for predicting out-of-sample directional movements for the...
Persistent link: https://www.econbiz.de/10011644167
Persistent link: https://www.econbiz.de/10011869420
Persistent link: https://www.econbiz.de/10013256900
We develop a multivariate statistical arbitrage strategy based on vine copulas - a highly flexible instrument for linear and nonlinear multivariate dependence modeling. In an empirical application on the S&P 500, we find statistically and economically significant returns of 9.25 percent p.a. and...
Persistent link: https://www.econbiz.de/10011549742
Persistent link: https://www.econbiz.de/10011661795
Persistent link: https://www.econbiz.de/10012262849
This paper presents the first large-scale application of deep reinforcement learning to optimize the placement of limit orders at cryptocurrency exchanges. For training and out-of-sample evaluation, we use a virtual limit order exchange to reward agents according to the realized shortfall over a...
Persistent link: https://www.econbiz.de/10012204902
This paper presents the first large-scale application of deep reinforcement learning to optimize the placement of limit orders at cryptocurrency exchanges. For training and out-of-sample evaluation, we use a virtual limit order exchange to reward agents according to the realized shortfall over a...
Persistent link: https://www.econbiz.de/10012206907